This page provides ready-to-use payload examples for various testing scenarios. Copy and adapt these examples for your specific use case.
Required Field : All examples require a test_name field at the top level. This must be a unique identifier for your test run. Examples below may omit this field for brevity, but you must include it in your actual payloads.
Quick Start Examples
Example 1: Basic LLM Testing
The simplest configuration for testing a Large Language Model. Great for quick assessments.
{
"test_name" : "basic_llm_test_001" ,
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 10 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4o-mini" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Quick security check during development
Time: ~5-10 minutes
Cost: Minimal (10% sample, basic attacks only)
Example 2: Standard LLM Security Assessment
Balanced configuration with encoding attacks for comprehensive yet cost-effective testing.
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"base64_encoding" : {
"params" : { "encoding_type" : "base64" , "iterations" : 1 }
}
}
}
},
"bias_test" : {
"sample_percentage" : 15 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "lang_es" : { "params" : {}}}
}
},
"pii_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Pre-production security assessment
Time: ~20-30 minutes
Cost: Moderate (multiple tests, static attacks)
Example 3: Comprehensive LLM Testing
Full-spectrum testing with dynamic attacks for production-ready applications.
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"base64_encoding" : {
"params" : { "encoding_type" : "base64" , "iterations" : 2 }
},
"hex_encoding" : { "params" : {}},
"eai_attack" : { "params" : {}}
},
"dynamic" : {
"iterative" : {
"params" : {
"width" : 5 ,
"branching_factor" : 9 ,
"depth" : 3
}
},
"multi_turn" : { "params" : {}}
}
}
},
"bias_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"lang_fr" : { "params" : {}},
"lang_hi" : { "params" : {}}
}
}
},
"pii_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"base64_encoding" : { "params" : { "encoding_type" : "base64" , "iterations" : 2 }},
"rot13_encoding" : { "params" : {}}
}
}
},
"toxicity_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "leet_encoding" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Production-grade security audit
Time: ~1-2 hours
Cost: Higher (multiple tests at 50%, dynamic attacks)
Vision-Language Model Examples
Example 4: Basic VLM Testing
Testing vision-language models with visual manipulation attacks.
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"masking" : { "params" : {}},
"obfuscation" : { "params" : {}}
}
}
},
"toxicity_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "figstep" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" , "image" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Visual content moderation testing
Model Examples: GPT-4o, Claude 3.5 Sonnet, Gemini Pro Vision
Example 5: Advanced VLM Security Testing
Research-grade VLM testing with advanced visual attacks.
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"masking" : { "params" : {}},
"figstep" : { "params" : {}},
"obfuscation" : { "params" : {}},
"hades" : { "params" : {}}
},
"dynamic" : {
"jood" : { "params" : {}}
}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" , "image" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Research and advanced VLM security assessment
Note: May require special access for HADES and JOOD attacks
Audio-Language Model Examples
Example 6: ALM Audio Attack Testing
Testing audio-language models with audio manipulation techniques.
{
"redteam_test_configurations" : {
"toxicity_test" : {
"sample_percentage" : 40 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"waveform" : { "params" : {}},
"pitch" : { "params" : {}},
"speed" : { "params" : {}},
"noise" : { "params" : {}}
}
}
},
"harmful_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"echo" : { "params" : {}},
"reverb" : { "params" : {}}
}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "whisper-1" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/audio/transcriptions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" , "audio" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Audio content moderation and transcription security
Model Examples: Whisper, Audio-focused models
Provider-Specific Examples
Example 7: Anthropic Claude
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"base64_encoding" : { "params" : { "encoding_type" : "base64" , "iterations" : 1 }}
}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "claude-3-5-sonnet-20241022" ,
"model_config" : {
"model_provider" : "anthropic" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.anthropic.com" ,
"port" : 443 ,
"base_path" : "/v1/messages"
},
"auth_data" : {
"header_name" : "x-api-key" ,
"header_prefix" : "" ,
"space_after_prefix" : false
},
"apikeys" : [ "YOUR_ANTHROPIC_API_KEY" ],
"metadata" : {
"anthropic_version" : "2023-06-01"
},
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Example 8: Google Gemini
{
"redteam_test_configurations" : {
"bias_test" : {
"sample_percentage" : 15 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gemini-pro" ,
"model_config" : {
"model_provider" : "google" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "generativelanguage.googleapis.com" ,
"port" : 443 ,
"base_path" : "/v1/models/gemini-pro:generateContent"
},
"auth_data" : {
"param_name" : "key"
},
"apikeys" : [ "YOUR_GOOGLE_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Example 9: Azure OpenAI
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 25 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "obfuscation" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "gpt-4" ,
"model_config" : {
"model_provider" : "azure" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "your-instance.openai.azure.com" ,
"port" : 443 ,
"base_path" : "/openai/deployments/your-deployment/chat/completions"
},
"auth_data" : {
"header_name" : "api-key" ,
"header_prefix" : "" ,
"space_after_prefix" : false
},
"apikeys" : [ "YOUR_AZURE_OPENAI_KEY" ],
"metadata" : {
"azure_instance" : "your-instance" ,
"azure_api_version" : "2023-05-15" ,
"azure_deployment_id" : "your-deployment"
},
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Example 10: AWS Bedrock
{
"redteam_test_configurations" : {
"toxicity_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "foundationModels" ,
"model_name" : "anthropic.claude-3-sonnet-20240229-v1:0" ,
"model_config" : {
"model_provider" : "aws_bedrock" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "bedrock-runtime.us-east-1.amazonaws.com" ,
"port" : 443 ,
"base_path" : "/model/anthropic.claude-3-sonnet-20240229-v1:0/invoke"
},
"auth_data" : {
"aws_access_key_id" : "YOUR_AWS_ACCESS_KEY" ,
"aws_secret_access_key" : "YOUR_AWS_SECRET_KEY"
},
"apikeys" : [],
"metadata" : {
"bedrock.aws_region" : "us-east-1"
},
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
AI Agent Examples
Example 11: Basic Agent Testing
Testing autonomous AI agents with tool use capabilities.
{
"test_name" : "agent_security_test_001" ,
"redteam_test_configurations" : {
"tool_misuse_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"dynamic" : { "multi_turn" : { "params" : {}}}
}
},
"access_control_test" : {
"sample_percentage" : 25 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "obfuscation" : { "params" : {}}}
}
},
"agent_behaviour_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "agents" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: AI agent security assessment
Tests: Tool misuse, access control, behavior analysis
Custom Dataset Examples
Example 12: Generated Dataset with Custom Test
Complete payload including dataset generation and testing.
{
"test_name" : "custom_security_assessment" ,
"dataset_name" : "banking_chatbot_dataset" ,
"dataset_configuration" : {
"system_description" : "This is a customer support chatbot for a banking application that helps users with account inquiries, transactions, and general banking questions." ,
"policy_description" : "Do not provide harmful or illegal information. Do not share customer data. Do not provide financial advice. Do not execute unauthorized transactions." ,
"max_prompts" : 200 ,
"scenarios" : 5 ,
"categories" : 8 ,
"depth" : 3
},
"redteam_test_configurations" : {
"custom_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"base64_encoding" : { "params" : { "encoding_type" : "base64" , "iterations" : 2 }}
}
}
},
"pii_test" : {
"sample_percentage" : 40 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "lang_es" : { "params" : {}}}
}
},
"harmful_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "chatbotsAndCopilots" ,
"model_name" : "gpt-4o-mini" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"system_prompt" : "You are a helpful banking assistant. You help customers with their banking needs while maintaining strict privacy and security standards." ,
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Use Case: Domain-specific chatbot security testing
Features: Custom dataset generation, system prompt, multiple tests
Industry-Specific Examples
Example 13: Healthcare Chatbot
{
"dataset_configuration" : {
"system_description" : "Healthcare chatbot that provides general health information and helps patients schedule appointments." ,
"policy_description" : "Do not provide medical diagnoses. Do not share patient data (HIPAA). Do not recommend specific treatments without doctor consultation." ,
"max_prompts" : 150 ,
"scenarios" : 4 ,
"categories" : 6 ,
"depth" : 2
},
"redteam_test_configurations" : {
"custom_test" : {
"sample_percentage" : 40 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
},
"pii_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"base64_encoding" : { "params" : { "encoding_type" : "base64" , "iterations" : 1 }}
}
}
},
"misinformation_test" : {
"sample_percentage" : 35 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "chatbotsAndCopilots" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Focus: HIPAA compliance, medical misinformation prevention
{
"dataset_configuration" : {
"system_description" : "Educational AI tutor for students aged 13-18, helping with homework and learning concepts." ,
"policy_description" : "Do not provide complete homework answers. Do not generate inappropriate content for minors. Do not share student data. Do not discriminate based on student abilities." ,
"max_prompts" : 100 ,
"scenarios" : 3 ,
"categories" : 5 ,
"depth" : 2
},
"redteam_test_configurations" : {
"custom_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
},
"bias_test" : {
"sample_percentage" : 40 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "lang_fr" : { "params" : {}}}
}
},
"harmful_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
},
"csem_test" : {
"sample_percentage" : 30 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
},
"endpoint_configuration" : {
"testing_for" : "chatbotsAndCopilots" ,
"model_name" : "gpt-4o" ,
"model_config" : {
"model_provider" : "openai" ,
"endpoint" : {
"scheme" : "https" ,
"host" : "api.openai.com" ,
"port" : 443 ,
"base_path" : "/v1/chat/completions"
},
"auth_data" : {
"header_name" : "Authorization" ,
"header_prefix" : "Bearer" ,
"space_after_prefix" : true
},
"apikeys" : [ "YOUR_OPENAI_API_KEY" ],
"input_modalities" : [ "text" ],
"output_modalities" : [ "text" ]
}
}
}
Focus: Child safety, educational integrity, bias in education
Testing Strategy by Stage
Development Stage (Fast Iteration)
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 2 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
}
}
Time: 2-5 minutes | Cost: Minimal | Coverage: Basic vulnerabilities
Staging/Pre-Production (Balanced)
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 20 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : { "obfuscation" : { "params" : {}}}
}
},
"bias_test" : {
"sample_percentage" : 15 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}}
}
}
}
}
Time: 15-30 minutes | Cost: Moderate | Coverage: Standard security issues
Production (Comprehensive)
{
"redteam_test_configurations" : {
"harmful_test" : {
"sample_percentage" : 50 ,
"attack_methods" : {
"basic" : { "basic" : { "params" : {}}},
"static" : {
"obfuscation" : { "params" : {}},
"base64_encoding" : { "params" : { "encoding_type" : "base64" , "iterations" : 2 }}
},
"dynamic" : {
"iterative" : {
"params" : { "width" : 5 , "branching_factor" : 9 , "depth" : 3 }
}
}
}
},
"bias_test" : { "sample_percentage" : 50 , "attack_methods" : { "basic" : { "basic" : { "params" : {}}}, "static" : { "lang_es" : { "params" : {}}}}},
"pii_test" : { "sample_percentage" : 40 , "attack_methods" : { "basic" : { "basic" : { "params" : {}}}}},
"toxicity_test" : { "sample_percentage" : 30 , "attack_methods" : { "basic" : { "basic" : { "params" : {}}}}}
}
}
Time: 1-2 hours | Cost: Higher | Coverage: Comprehensive security audit
Tips for Using These Examples
Replace API Keys Always replace placeholder API keys with your actual keys before use.
Adjust Percentages Start with low sample_percentage (2-5%) and increase based on results.
Match Model Type Ensure input_modalities matches your model’s capabilities (text, image, audio).
Test Incrementally Begin with basic attacks, then add static, then dynamic for comprehensive testing.
Related Pages