Models API Documentation
Get Defaults
curl --request GET \
--url https://api.enkryptai.com/models/get-defaults \
--header 'apikey: <api-key>'
{
"available_providers": [
"openai",
"together",
"huggingface",
"groq",
"azure_openai",
"anthropic",
"cohere",
"bedrock",
"gemini",
"ai21",
"fireworks",
"alibaba",
"portkey",
"deepseek",
"mistral",
"llama",
"openai_compatible",
"cohere_compatible",
"anthropic_compatible"
],
"openai": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"SOC 2 Type 2",
"SOC 3",
"CSA STAR Level 1"
],
"model_config": {
"model_provider": "openai",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://openai.com",
"endpoint": {
"scheme": "https",
"host": "api.openai.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"together": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-3.3-70B-Instruct-Turbo",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.together.ai",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.88,
"output_cost_1M_tokens": 0.88
},
"default_request_options": {
"temperature": 0.7,
"top_p": 0.7,
"top_k": 50
}
}
},
"huggingface": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "huggingface",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://huggingface.co",
"endpoint": {
"scheme": "https",
"host": "api-inference.huggingface.co",
"port": 443,
"base_path": "/models/{model_name}/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": null,
"output_cost_1M_tokens": null,
"huggingface": {
"use_cache": false,
"wait_for_model": false
}
},
"default_request_options": {
"temperature": 0.7,
"top_p": null,
"top_k": null
}
}
},
"groq": {
"testing_for": "LLM",
"model_name": "llama3-8b-8192",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "groq",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://groq.com",
"endpoint": {
"scheme": "https",
"host": "api.groq.com",
"port": 443,
"base_path": "/openai/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.05,
"output_cost_1M_tokens": 0.08
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"azure_openai": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR"
],
"model_config": {
"model_provider": "azure_openai",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://microsoft.com",
"endpoint": {
"scheme": "https",
"host": "{azure_instance}.openai.azure.com",
"port": 443,
"base_path": "/openai/deployments/{azure_deployment_id}"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10,
"azure_instance": "instance_name",
"azure_api_version": "2024-10-21",
"azure_deployment_id": "gpt-4o"
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"anthropic": {
"testing_for": "LLM",
"model_name": "claude-3-5-sonnet-latest",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2 Type 1",
"SOC 2 Type 2",
"HIPAA"
],
"model_config": {
"model_provider": "anthropic",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://anthropic.com",
"endpoint": {
"scheme": "https",
"host": "api.anthropic.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/complete",
"chat": "/chat/messages"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 3.75,
"output_cost_1M_tokens": 15,
"anthropic_version": "2023-06-01"
},
"default_request_options": {
"temperature": 1,
"top_p": null,
"top_k": null
}
}
},
"cohere": {
"testing_for": "LLM",
"model_name": "command",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"SOC 2 Type 2"
],
"model_config": {
"model_provider": "cohere",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://cohere.com",
"endpoint": {
"scheme": "https",
"host": "api.cohere.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/generate",
"chat": "/chat"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 0.3,
"top_p": 0.75,
"top_k": 0
}
}
},
"bedrock": {
"testing_for": "LLM",
"model_name": "amazon.titan-text-express-v1",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"ISO",
"CSA",
"FedRAMP",
"HIPAA",
"SOC 1 Type 2",
"SOC 3 Type 2",
"SOC 3 Type 2"
],
"model_config": {
"model_provider": "bedrock",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://aws.amazon.com/bedrock",
"endpoint": {
"scheme": "https",
"host": "bedrock-runtime.{aws_region}.amazonaws.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/model/{model_name}/invoke",
"chat": "/model/{model_name}/converse"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.2,
"output_cost_1M_tokens": 0.6,
"bedrock": {
"aws_region": "us-east-1"
}
},
"default_request_options": {
"temperature": 0.7,
"top_p": 0.9,
"top_k": null
}
}
},
"gemini": {
"testing_for": "LLM",
"model_name": "gemini-1.5-flash-latest",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"HIPAA",
"SOC 1 Type 2",
"SOC 3 Type 2",
"SOC 3 Type 2",
"ISO/IEC 27001",
"ISO/IEC 27017",
"ISO/IEC 27018",
"ISO/IEC 27701"
],
"model_config": {
"model_provider": "gemini",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://ai.google.dev",
"endpoint": {
"scheme": "https",
"host": "generativelanguage.googleapis.com",
"port": 443,
"base_path": "/v1beta/models/{model_name}/llm/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat"
},
"auth_data": {
"param_name": "key"
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": null,
"top_p": 0.95,
"top_k": null
}
}
},
"ai21": {
"testing_for": "LLM",
"model_name": "jamba-mini",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"HIPAA",
"SOC 2 Type 2",
"ISO/IEC 27001",
"ISO/IEC 27017",
"ISO/IEC 27018",
"ISO 42001"
],
"model_config": {
"model_provider": "ai21",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.ai21.com/jamba/",
"endpoint": {
"scheme": "https",
"host": "api.ai21.com",
"port": 443,
"base_path": "/studio/v1"
},
"paths": {
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 0.4,
"top_p": 1,
"top_k": null
}
}
},
"fireworks": {
"testing_for": "LLM",
"model_name": "accounts/fireworks/models/llama-v3p1-8b-instruct",
"model_type": "text_2_text",
"certifications": [
"HIPAA",
"SOC 2 Type 2"
],
"model_config": {
"model_provider": "fireworks",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://fireworks.ai/",
"endpoint": {
"scheme": "https",
"host": "api.fireworks.ai",
"port": 443,
"base_path": "/inference/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"alibaba": {
"testing_for": "LLM",
"model_name": "qwen-plus",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "alibaba",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.alibabacloud.com/help/en/model-studio",
"endpoint": {
"scheme": "https",
"host": "dashscope-intl.aliyuncs.com",
"port": 443,
"base_path": "/compatible-mode/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": null,
"top_p": null,
"top_k": null
}
}
},
"portkey": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"HIPAA",
"SOC 2 Type 2",
"ISO 27001:2022"
],
"model_config": {
"model_provider": "portkey",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://portkey.ai/",
"endpoint": {
"scheme": "https",
"host": "api.portkey.ai",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"deepseek": {
"testing_for": "LLM",
"model_name": "deepseek-chat",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "deepseek",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.deepseek.com/",
"endpoint": {
"scheme": "https",
"host": "api.deepseek.com",
"port": 443,
"base_path": ""
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"mistral": {
"testing_for": "LLM",
"model_name": "mistral-large-latest",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "mistral",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://mistral.ai",
"endpoint": {
"scheme": "https",
"host": "api.mistral.ai",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2,
"output_cost_1M_tokens": 6,
"mistral_format": "openai"
},
"default_request_options": {
"temperature": null,
"top_p": 1,
"top_k": null
}
}
},
"llama": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-2-7b-chat-hf",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "llama",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://llama.com",
"endpoint": {
"scheme": "https",
"host": "api-inference.huggingface.co",
"port": 443,
"base_path": "/models/{model_name}/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": null,
"output_cost_1M_tokens": null,
"llama2_format": "openai"
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
}
}
Authorizations
Response
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
Name of the saved model
"Test Model"
Name of the model
"mistralai/Mixtral-8x7B-Instruct-v0.1"
Provider of the model which determines the request response format
openai
, together
, huggingface
, groq
, azure_openai
, anthropic
, cohere
, bedrock
, gemini
, ai21
, fireworks
, alibaba
, portkey
, deepseek
, mistral
, llama
, openai_compatible
, cohere_compatible
, anthropic_compatible
"together"
Scheme of the endpoint
"https"
Host of the endpoint
"api.together.xyz"
Port of the endpoint
443
Base path of the endpoint
"/v1"
Custom identifier for the model
"v1"
Hosting type of the model
External
, Internal
"External"
Source of the model
"https://together.ai"
< 100 won't enable async. > 100 will enable async mode. > 200 we can run boosted async (all tests in parallel). Default 20.
20
System prompt
""
Conversation template
""
["TOGETHER_AI_API_KEY"]
2048
2.5
10
If Azure, it's instance type
"enkrypt2024"
If Azure, it's API version
"2024-02-01"
If Azure, it's deployment ID
"gpt3"
If Anthropic, it's version
""
If Llama2, it's format
openai
"openai"
If Mistral, it's format
openai
, ollama
"openai"
If running Gemini on Vertex, specify the regional API endpoint (hostname only)
""
If running Gemini on Vertex, specify the project ID
""
If running Gemini on Vertex, specify the location ID
""
Purpose of testing
Copilot
, LLM
, Chatbot
"LLM"
Type of the model
text_2_text
"text_2_text"
List of certifications
[
"GDPR",
"CCPA",
"HIPAA",
"SOC 2 Type II",
"SOC 3"
]
{
"model_saved_name": "Test Model",
"testing_for": "LLM",
"model_name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://together.ai",
"rate_per_min": 20,
"system_prompt": "",
"conversation_template": "",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"apikeys": ["xxxxx"],
"metadata": {},
"default_request_options": {}
}
}
curl --request GET \
--url https://api.enkryptai.com/models/get-defaults \
--header 'apikey: <api-key>'
{
"available_providers": [
"openai",
"together",
"huggingface",
"groq",
"azure_openai",
"anthropic",
"cohere",
"bedrock",
"gemini",
"ai21",
"fireworks",
"alibaba",
"portkey",
"deepseek",
"mistral",
"llama",
"openai_compatible",
"cohere_compatible",
"anthropic_compatible"
],
"openai": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"SOC 2 Type 2",
"SOC 3",
"CSA STAR Level 1"
],
"model_config": {
"model_provider": "openai",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://openai.com",
"endpoint": {
"scheme": "https",
"host": "api.openai.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"together": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-3.3-70B-Instruct-Turbo",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "together",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.together.ai",
"endpoint": {
"scheme": "https",
"host": "api.together.xyz",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.88,
"output_cost_1M_tokens": 0.88
},
"default_request_options": {
"temperature": 0.7,
"top_p": 0.7,
"top_k": 50
}
}
},
"huggingface": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-3.2-11B-Vision-Instruct",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "huggingface",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://huggingface.co",
"endpoint": {
"scheme": "https",
"host": "api-inference.huggingface.co",
"port": 443,
"base_path": "/models/{model_name}/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": null,
"output_cost_1M_tokens": null,
"huggingface": {
"use_cache": false,
"wait_for_model": false
}
},
"default_request_options": {
"temperature": 0.7,
"top_p": null,
"top_k": null
}
}
},
"groq": {
"testing_for": "LLM",
"model_name": "llama3-8b-8192",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2"
],
"model_config": {
"model_provider": "groq",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://groq.com",
"endpoint": {
"scheme": "https",
"host": "api.groq.com",
"port": 443,
"base_path": "/openai/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.05,
"output_cost_1M_tokens": 0.08
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"azure_openai": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR"
],
"model_config": {
"model_provider": "azure_openai",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://microsoft.com",
"endpoint": {
"scheme": "https",
"host": "{azure_instance}.openai.azure.com",
"port": 443,
"base_path": "/openai/deployments/{azure_deployment_id}"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10,
"azure_instance": "instance_name",
"azure_api_version": "2024-10-21",
"azure_deployment_id": "gpt-4o"
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"anthropic": {
"testing_for": "LLM",
"model_name": "claude-3-5-sonnet-latest",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"SOC 2 Type 1",
"SOC 2 Type 2",
"HIPAA"
],
"model_config": {
"model_provider": "anthropic",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://anthropic.com",
"endpoint": {
"scheme": "https",
"host": "api.anthropic.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/complete",
"chat": "/chat/messages"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 3.75,
"output_cost_1M_tokens": 15,
"anthropic_version": "2023-06-01"
},
"default_request_options": {
"temperature": 1,
"top_p": null,
"top_k": null
}
}
},
"cohere": {
"testing_for": "LLM",
"model_name": "command",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"SOC 2 Type 2"
],
"model_config": {
"model_provider": "cohere",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://cohere.com",
"endpoint": {
"scheme": "https",
"host": "api.cohere.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/generate",
"chat": "/chat"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 0.3,
"top_p": 0.75,
"top_k": 0
}
}
},
"bedrock": {
"testing_for": "LLM",
"model_name": "amazon.titan-text-express-v1",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"ISO",
"CSA",
"FedRAMP",
"HIPAA",
"SOC 1 Type 2",
"SOC 3 Type 2",
"SOC 3 Type 2"
],
"model_config": {
"model_provider": "bedrock",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://aws.amazon.com/bedrock",
"endpoint": {
"scheme": "https",
"host": "bedrock-runtime.{aws_region}.amazonaws.com",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/model/{model_name}/invoke",
"chat": "/model/{model_name}/converse"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 0.2,
"output_cost_1M_tokens": 0.6,
"bedrock": {
"aws_region": "us-east-1"
}
},
"default_request_options": {
"temperature": 0.7,
"top_p": 0.9,
"top_k": null
}
}
},
"gemini": {
"testing_for": "LLM",
"model_name": "gemini-1.5-flash-latest",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"HIPAA",
"SOC 1 Type 2",
"SOC 3 Type 2",
"SOC 3 Type 2",
"ISO/IEC 27001",
"ISO/IEC 27017",
"ISO/IEC 27018",
"ISO/IEC 27701"
],
"model_config": {
"model_provider": "gemini",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://ai.google.dev",
"endpoint": {
"scheme": "https",
"host": "generativelanguage.googleapis.com",
"port": 443,
"base_path": "/v1beta/models/{model_name}/llm/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat"
},
"auth_data": {
"param_name": "key"
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": null,
"top_p": 0.95,
"top_k": null
}
}
},
"ai21": {
"testing_for": "LLM",
"model_name": "jamba-mini",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"CCPA",
"PCI DSS",
"HIPAA",
"SOC 2 Type 2",
"ISO/IEC 27001",
"ISO/IEC 27017",
"ISO/IEC 27018",
"ISO 42001"
],
"model_config": {
"model_provider": "ai21",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.ai21.com/jamba/",
"endpoint": {
"scheme": "https",
"host": "api.ai21.com",
"port": 443,
"base_path": "/studio/v1"
},
"paths": {
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 0.4,
"top_p": 1,
"top_k": null
}
}
},
"fireworks": {
"testing_for": "LLM",
"model_name": "accounts/fireworks/models/llama-v3p1-8b-instruct",
"model_type": "text_2_text",
"certifications": [
"HIPAA",
"SOC 2 Type 2"
],
"model_config": {
"model_provider": "fireworks",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://fireworks.ai/",
"endpoint": {
"scheme": "https",
"host": "api.fireworks.ai",
"port": 443,
"base_path": "/inference/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"alibaba": {
"testing_for": "LLM",
"model_name": "qwen-plus",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "alibaba",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.alibabacloud.com/help/en/model-studio",
"endpoint": {
"scheme": "https",
"host": "dashscope-intl.aliyuncs.com",
"port": 443,
"base_path": "/compatible-mode/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": null,
"top_p": null,
"top_k": null
}
}
},
"portkey": {
"testing_for": "LLM",
"model_name": "gpt-4o",
"model_type": "text_2_text",
"certifications": [
"GDPR",
"HIPAA",
"SOC 2 Type 2",
"ISO 27001:2022"
],
"model_config": {
"model_provider": "portkey",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://portkey.ai/",
"endpoint": {
"scheme": "https",
"host": "api.portkey.ai",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"deepseek": {
"testing_for": "LLM",
"model_name": "deepseek-chat",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "deepseek",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://www.deepseek.com/",
"endpoint": {
"scheme": "https",
"host": "api.deepseek.com",
"port": 443,
"base_path": ""
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2.5,
"output_cost_1M_tokens": 10
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
},
"mistral": {
"testing_for": "LLM",
"model_name": "mistral-large-latest",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "mistral",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://mistral.ai",
"endpoint": {
"scheme": "https",
"host": "api.mistral.ai",
"port": 443,
"base_path": "/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": 2,
"output_cost_1M_tokens": 6,
"mistral_format": "openai"
},
"default_request_options": {
"temperature": null,
"top_p": 1,
"top_k": null
}
}
},
"llama": {
"testing_for": "LLM",
"model_name": "meta-llama/Llama-2-7b-chat-hf",
"model_type": "text_2_text",
"certifications": [],
"model_config": {
"model_provider": "llama",
"model_version": "1",
"hosting_type": "External",
"model_source": "https://llama.com",
"endpoint": {
"scheme": "https",
"host": "api-inference.huggingface.co",
"port": 443,
"base_path": "/models/{model_name}/v1"
},
"paths": {
"completions": "/completions",
"chat": "/chat/completions"
},
"auth_data": {
"header_name": "Authorization",
"header_prefix": "Bearer",
"space_after_prefix": true
},
"metadata": {
"max_tokens": 500,
"input_cost_1M_tokens": null,
"output_cost_1M_tokens": null,
"llama2_format": "openai"
},
"default_request_options": {
"temperature": 1,
"top_p": 1,
"top_k": null
}
}
}
}